Категории

Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow. Концепции, инструменты

92.84€ 168.80€
Скидка 45%
Модель: 34760152
Наличие: Отправка 10-12 раб. дн.
Выдающийся ресурс для изучения машинного обучения. Вы найдете здесь ясные и интуитивно понятные объяснения, а также обилие практических советов. Франсуа Шолле, автор библиотеки Keras, автор книги Deep Learning with Python Эта книга - замечательное введение в теорию и практику решения задач с помощью нейронных сетей; я рекомендую ее всем, кто заинтересован в освоении практического машинного обучения. Пит Уорден, руководитель команды мобильной разработки TensorFlow Благодаря серии выдающихся достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на данных. Новое издание книги-бестселлера, опирающееся на конкретные примеры, минимум теории и готовые фреймворки Python производственного уровня, поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы освоите широкий спектр методик, которые можно быстро задействовать на практике. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования. Весь код доступен на GitHub. Он был обновлен с учетом TensorFlow 2 и последней версии Scikit-Learn. Особенности книги Изучите основы машинного обучения на сквозном проекте с применением Scikit-Learn и Pandas Постройте и обучите нейронные сети с многочисленными архитектурами для классификации и регрессии, используя TensorFlow 2 Ознакомьтесь с выявлением объектов, семантической сегментацией, механизмами внимания, языковыми моделями, порождающими состязательными сетями и многим другим Исследуйте Keras API - официальный высокоуровневый API-интерфейс для TensorFlow 2 Запускайте в производство модели TensorFlow с применением Data API из TensorFlow, стратегий распределения, TF Transform и TF Serving Развертывайте модели на платформе AI Platform инфраструктуры Google Cloud или на мобильных устройствах Используйте методики обучения без учителя, такие как понижение размерности, кластеризация и обнаружение аномалий Создавайте автономные обучающиеся агенты с помощью обучения с подкреплением, в том числе с применением библиотеки TF-Agents Книга обсуждается в отдельном сообщении в блоге Виктора Штонда. Об авторе Орельен Жерон - консультант и инструктор по машинному обучению. Бывший работник компании Google, с 2013 по 2016 год он руководил командой классификации видеороликов YouTube. С 2002 по 2012 год он также был основателем и руководителем технического отдела в компании Wifirst (ведущего поставщика услуг беспроводного доступа к Интернету во Франции). 2-е издание.
Свойства
Автор Жерон Орельен
Переводчик Артеменко Ю. Н.
Переплет твердый
Страниц 1040
Бумага офсетная
Иллюстрации ч/б иллюстрации
Год издания 2020
Язык издания русский
ISBN 978-5-907203-33-4

Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Защита от роботов