Категории

Математика в машинном обучении

41.88€ 76.15€
Скидка 45%
Модель: 44326276
Наличие: Отправка 10-12 раб. дн.
Фундаментальные математические дисциплины, необходимые для понимания машинного обучения, - это линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика. Традиционно все эти темы размазаны по различным курсам, поэтому студентам, изучающим data science или computer science, а также профессионалам в МО, сложно выстроить знания в единую концепцию. Эта книга самодостаточна: читатель знакомится с базовыми математическими концепциями, а затем переходит к четырем основным методам МО: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов. Тем, кто только начинает изучать математику, такой подход поможет развить интуицию и получить практический опыт в применении математических знаний, а для читателей с базовым математическим образованием книга послужит отправной точкой для более продвинутого знакомства с машинным обучением.
Свойства
Автор Дайзенрот Марк Питер
Серия Для профессионалов
Переплет мягкий
Страниц 512
Год издания 2024
ISBN 978-5-4461-1788-8

Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Защита от роботов