Категории

Машинное обучение с малым объемом кодирования

25.93€ 47.15€
Скидка 45%
Модель: 44471840
Наличие: Отправка 10-12 раб. дн.
В книге подробно представлены три проблемно-ориентированных вида машинного обучения (Machine learning, ML): автоматизированное обучение AutoML без кодирования, обучение BigQuery ML с малым объемом кодирования и обучение с применением пользовательского кода на основе библиотек scikit-learn и Keras. При этом от читателя не требуется глубоких предварительных знаний в ML или программировании, но базовые навыки в этих областях будут полезны. Специализированные библиотеки, фреймворки ML, репозиторий GitHub и другие инструменты описаны по мере их необходимости. В каждом конкретном случае ключевые концепции ML раскрыты с использованием реальных наборов данных для решения реальных задач. Рассмотрено применение AutoML для прогнозирования продаж, использование BigQuery ML для обучения линейных регрессионных моделей, обучение пользовательских ML-моделей на Python для прогнозирования оттока клиентов и ряд других популярных бизнес-кейсов.
Свойства
Автор Стриплинг Г., Абель М.
Переплет мягкий
Страниц 296
Бумага офсетная
Год издания 2025
Язык издания русский
Возраст 16+
ISBN 978-601-08-4725-5

Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Защита от роботов