Категории

Динамические нейросетевые модели банкротств корпораций при неполных данных

Модель: 34677676
Наличие: Распродано

Товар распродан.

Монография посвящена сложной и практически неисследованной проблеме нейросетевого моделирования развития процессов банкротств корпораций в динамике. Сложность этих моделей вытекает из специфической неполноты данных, обусловленных юридическими причинами, и сильной зашумленности данных. Предложен метод оптимизации структуры нейросети в комбинации с её байесовской регуляризацией, а также алгоритм компрессии переменных на основе обобщенной функции желательности Харрингтона. Разработан на основе общесистемных законов концептуальный базис нейросетевого моделирования и реализующий его нейросетевой логистический динамический метод, который восстанавливает неполные данные в ходе решения задачи аппроксимации зависимости «вход-выход». Впервые рассмотрены гибридные нейросетевые модели неправомерных банкротств юридических лиц. Выдвинутые теоретические идеи подробно иллюстрируются прикладными задачами и обосновываются вычислительными экспериментами на реальных данных. Материал монографии на 90% оригинален, обобщает и развивает методы нейросетевого моделирования банкротств из прежних книг авторов.
Для студентов, магистрантов и преподавателей широкого круга вузов, а также научных работников, интересующихся проблемами нейросетевого моделирования в сфере финансового менеджмента и экономической безопасности предприятий.
Свойства
Формат 20.7x13.6x1.6 см
Переплет твердый
Автор Горбатков Станислав Анатольевич
ISBN 978-5-907244-86-3
Страниц 210
Год издания 2020

Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Защита от роботов